

Eukaryotic communities characterized using airborne DNA from poultry buildings:

first insights towards pest control improvement in layer henhouses

Adrien Taudière (adrien.taudiere@zaclys.net), Tony Dejean, Geoffrey Chiron, Marine El Adouzi, Olivier Bonato, and Lise Roy

SFE2 Rennes - Octobre 2018

Context & objectives

- Improving environmentally friendly strategies for **controlling pests** is crucial in modern agriculture and requires a better knowledge of the ecological networks involving pest species. The poultry red mite (Dermanyssus gallinae) is a haematophagous pest of economic importance in poultry farms. The ecology of D. gallinae is poorly known in particular concerning its predators and pathogens.
- Using airborne DNA metabarcoding coupled with visual counting of acari morphospecies, we propose a first insight into Eukaryotic communities in the environnement of henhouse under different types of farm managements.
- The overall objectives of this study were to (i) characterize the Eukaryotic communities in henhouses under different farming practices and their relation with *D. gallinae* abundance and (ii) disentangle interactions within the predatory mite guild (which potentially encompasses predators of *D. gallinae*).

- Excluding Cordata and Plants (Fig. 1), *D. gallinae* was the second most abundant OTU (1.2M seq.) after a fungal OTU belonging to the Sordariomycetes family (9.7M seq.).
- Alpha-diversity of Eukaryota and Acari were not affected by farming practices (Wilcoxon test: p-values > 0.05; Fig. 2).
- Farming practices explained significatively (Permanova: p=0.001) though very weakly the variation in Eukaryota communities (Fig. 3). Moreover, Acari communities vary far less across seasons than communities of other Eukaryota.
- Very few taxa displayed a **significant negative correlation** with the abundance of D. gallinae, and all these taxa belong to fungal Kingdom (Fig. 1).

Materials & Methods

Environnemental metabarcoding (Illumina) of Eukaryotic communities

204 samples

Visual counting (681 899 individuals) of arthropod morphospecies

Abbreviation for morphospecies:

ME1: multi-species (incl. Cornodendrolaeps presepum) ME2: two cryptic species (incl. Androlaelaps casalis)

ME4: Proctolaelaps near parascolyti

ME7: multi-species (incl. Macrocheles muscaedomesticae)

UR1: Uroobovella fimicola

UR2: multi-species (Uropodina)

(ii) Focus on Acari

Tab. 1: Correlation between molecular and visual abundance of Acari (Spearman test)

	18S) — (1)	
	Rho	P-value
Astigmata	0.62	0.0001
Cheyletoidea	0.29	0.0162
ME1	0.28	0.0186
ME2	0.39	0.0009
ME5	0.12	0.3243
ME7	0.27	0.0252
Oribatida	0.21	0.0875
UR1	0.15	0.2162
UR2	0.06	0.6043

Tab. 2 : Correlation between the abundance of D)_
gallinae and other Acari (Spearman test)	

			18S)		
	Rho	P-value	Rho	P-value	
Astigmata	0.28	0.0230	0.61	0.0001	
Cheyletoidea	-0.11	0.3508	0.31	0.0102	
ME1	-0.01	0.9150	0.19	0.1225	
ME2	0.47	0.0001	0.41	0.0006	
ME5	0.20	0.0977	0.09	0.4435	
ME7	0.07	0.5890	0.31	0.0100	
Oribatida	0.28	0.0230	0.17	0.1575	
UR1	0.10	0.4021	0.22	0.0775	
UR2	0.21	0.0814	0.00	0.9781	

- Molecular (air) and visual count (morphospecies) measured consistent abundances (Tab. 1) but **inconsistent community compositions** (Mantel test on Bray distance among samples: p=0.08).
- None of the acari morphospecies was negatively correlated with D. gallinae for either molecular or visual data (Tab. 2). However, farming practices may blur the overall signal.

Conclusion

- Farming practices is negligible in structuring Eukaryota communities identifiable via DNA in air.
- We identified some species of fungi that may have a negative impact on D. gallinae. Moreover, some Acari morphospecies, positively correlated with D. gallinae, could be good candidate for biological control by favoring their possible predation on the pest mite.
- We pave the way for further investigations of Eukaryote trophic networks involving the pest mite D. gallinae and thus help progress biocontrol in henhouses thanks to DNA metabarcoding.